
1

Understand Linux Components

Kill Bugs, and Fix Wasteful Code

Klaas van Gend

Agenda

 “Linux” is not a single building block
 Buy, Build, Borrow
 Deploy vs. Debug

 Demo: Use GDB
 Lab: Kill a bug

 Power Management Blocks
 Demo: Powertop
 (Lab: Fix Wasteful Code)

 When have you won?

Linux Building Blocks

Linux Kernel

libraries

shell

Various Daemons

DBUS
X

GTK

Your Application

syscalls

kernel

“user
space”

High-level subsystems

Low-level drivers

Everything is separate

Linux
kernel glibc

X.org

python

bash

Packages: Feature selections
System Designer must map requirements to packages

Multithreading? Use “libc” with “NPTL”

SNMP?

RFC 3927/2608 ?

“Net-SNMP”

“Avahi”

“metadata”

YouMr. Marketing

Build, Buy or Borrow?

What software packages to select?
From which source?

 System Software is usually more than one application
 Everything has been implemented before
 Division between kernel space and user space

Driver design – debugging, performance, licensing

 Software Licensing

Layers & Libraries

#include <curl/curl.h>

int main(void)

{

 CURLcode res;

 CURL * curl = curl_easy_init();

 curl_easy_setopt(curl,

 CURLOPT_URL,

 "www.mvista.com");

 res = curl_easy_perform(curl);

 curl_easy_cleanup(curl);

 return 0;

}

#include <stdlib.h>

int main(void)

{

 system("/usr/bin/wget -O - "

 "www.mvista.com");

 return 0;

}

•Is this all?
•Is this enough?
•Is this correct?

•Imagine you need to download a web page...

 How to glue it together?

• Once you have decided to use package X and Y
 How do they communicate?

 System Design
 System startup behavior?
 SysV or BSD-like init?
 Daemonize or not?
 Remote update?
 Do I want a shell?

Debugging

printf() / printk()

GDB - 1

 Understand code flow
 Inspect/modify variables
 Set Breakpoints
 Set Watchpoints
 View Backtraces
 Crash analysis

Demo: GDB / GDB TUI

 -tui or Ctrl-X A to start TUI
 'run' / 'start' / 'step' / 'next' / 'until'
 break <file>:<nr> if <condition>
 info breakpoints
 print x
 print *x
 display *x
 disable 3

See “cheat sheet”

Disadvantages of GDB

 stdout mixes with command view
 Breakpoints halt the whole process
 Breakpoints halt the process only
 Watchpoints are expensive
 GDB is big
 GDB requires symbol info

 Not graphical } DDD or Eclipse

gdbserver

Demo: Red/Black tree

44

98563522

8932

R/B tree
 always balanced

 log
2
(n)+1 levels deep

 Fast insert O(log N)
 Fast search O(log N)

 But... is the
implementation bad?

Let's check that (demo)

1

Lab assignment: preparation

 Set the date of your board to today:

 date -s 033003152009

Lab assignment: Red/Black
 Single step through the

code
 Look carefully at variables

 Find where the balancing
fails

 Fix it
 What is the maximum level

now?

 Bonus: draw the tree

Steps:
 cd /home/reblack
 gdb ./redblack
 set args myfile
 start
 step step step next

runheadless()
loads & prints the file

KVGLoadFile()
loads the file into the tree

edit file: vi or nano

Demo: the lab assignment

1

100

98

23

22

99

56

32

44

34

35

36

40

67

90

89
231 999067543634

3522 9856

32 89

44

4033 100

Power Management
Building Blocks

Power Management 101

Power management:

is a system level design goal...

not a software level design goal.

How we save power

Two big ways:
 Turn stuff off

 Clock trees, caches, displays, radios, USB, memory, anything you
can get your hands on.

 Clock stuff down and power it at a lower voltage
 P = CV2f in CMOS

 Switching capacitance

 Voltage (which also relates to frequency)

�

 Frequency

Five Step Homework Assignment

1. Enumerate system devices

2. Determine degrees of power management
freedom for each device

3. Identify constraints

4. Identify product use cases

5. Define power management policies

From the user’s perspective…

how you turn on

is as important as what you turn off!

Define Power Management Policies

Before we get into that we'd better learn what we
can control and how we can control it

 Saving power while the CPU is active
 Voltage and frequency scaling of the CPU using “cpufreq”

 Power Management-aware Drivers

 Saving power while the CPU is inactive
 Idle scaling

 Dynamic tick

 Deferrable timers

 Mitigate wakeups using “PowerTop” and system tuning

Stitching it together
 CPUfreq

 Create a processor driver: √

 Define operating points: √

 Modify standard drivers to respond to CPUfreq notifications: √
 Select and configure the governor

 Power management aware device drivers
 Implementing power management in a device driver

 Handling CPUfreq notifications in a device driver

 Suspend/Resume hooks

 Clock framework

√ = Implemented for you by MontaVista

The processor driver

Best to consult the kernel source code:
Documentation/cpu-freq/cpu-drivers.txt

 cpufreq_driver.name

 cpufreq_driver.owner

 cpufreq_driver.init

 cpufreq_driver.verify

 cpufreq_driver.[setpolicy|target]

 cpufreq_driver.exit

 cpufreq_driver.resume

 cpufreq_driver.attr

The Governor

Task: Decide how and when to change
operating points.
 Four options provided:

 performance:
statically set highest power operating point

 powersave:
statically set lowest power operating point

 userspace: permit any application running
as root to set the operating point

 ondemand: set the operating point based on
current CPU usage

More on the ondemand
Governor

 Works by altering the operating point to
minimize idle time.

 Lots of control knobs:
 sampling_rate
 sampling_rate_max
 sampling_rate_min
 up_threshold
 powersave_bias
 ignore_nice_load

Making Drivers Power Management Aware

Three areas to focus on:
 Wise power management: minimizing power

usage of the driver in regular operations
 Staying “off” between close() and open()

�

 Staying “off” if the transceiver/PHY indicates no connection

 Gating off unused clocks

 Switching off unused power

 Using lower voltages

 System sleep: Preparing the driver to respond
to system wide low-power sleep requests

 Responding to cpufreq notifications

System Wide Sleep

 Create a struct
platform_driver in
your driver

 Register the platform
driver

 Implement driver
specific suspend and
resume functions

 Use /sys/power/state
as a test interface

cpufreq Notifications

Your driver can register with cpufreq to get
notified of power events:

 CPUFREQ_PRECHANGE: sent immediately before
a new operating point is set

 CPUFREQ_POSTCHANGE: sent immediately after
a new operating point is set

 CPUFREQ_RESUMECHANGE: sent if the cpufreq
subsystem determines that an operating point
was changed during system suspend

Define Power Management
Policies

Before we get into that we'd better learn what we
can control and how we can control it

✔ Saving power while the CPU is active
✔ Voltage and frequency scaling of the CPU using cpufreq
✔ Power Management-aware Drivers

 Saving power while the CPU is inactive
 Idle scaling

 Dynamic tick

 Deferrable timers

 Mitigate wakeups using PowerTop and system tuning

Saving power during idle
 Idle Scaling: Reduce power consumption during idle

periods
 If you've done cpufreq well, you've got the job done already!

 Dynamic Tick: coalescing ticks to avoid unnecessary
wakeups

now

10 ms

zzz zzzzzzzzzzzz

60 ms deeper sleep

Deferrable Timers
 API so that drivers can notify the kernel that the timer wakeup is

needed but that the precise time of the wakeup is flexible.
 Use init_timer_deferrable()

i

 Example usage: flashing LED that indicates an email has arrived

Now

Time slice

Are we finished now?

Let’s assume you finished your kernel stuff…

Question: What about applications and other
stuff you didn’t write???

Demo: hunt power waste using PowerTop

Recommended Reading
 Benchmarking of Dynamic

Power Management Systems
Frank Dols

CELF Embedded Linux Conference 2007, Santa Clara

 Linked from http://www.mvista.com/power

Free for the asking...

http://www.mvista.com/power

Lab: let's hunt!

A daemon runs in /drop
 files put in there will be SHA1-checksummed

The daemon is using the (fixed) redblack code
 But there are two things wrong...
 What are they?

The sha_daemon problems

for(;;)
{
select(0, NULL,
NULL,
 NULL, &tv);
…
Getthetime();
}

Select()
 Wakes up every time

tick...

Getthetime()
 Doesn't exactly work

as advertised,
either :-)

Summary
 Linux system design isn't trivial

 Many building blocks
 Even more blocks when you want to debug

 Debugging is useful
 Power management is not trivial either

 But doable as many Linux cell phones prove
 Use powertop
 Toy with Governors

 Don't forget to have fun!

Klaas.van.Gend@mvista.com

	Understand Linux Components
	How to play the Game
	Subtitle here
	Slide 4
	Packages: Feature selections
	Challenge 2:
	Slide 7
	Challenge 4:
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	So let's get started...
	How we save power
	Five Step Homework Assignment
	Slide 22
	Define Power Management Policies
	Stitching it together
	The processor driver
	The Governor
	More on the ondemand Governor
	Making Drivers Power Management Aware
	System Wide Sleep
	cpufreq Notifications
	Slide 31
	Saving power during idle
	Deferrable Timers
	Are we finished now?
	Mitigate wakeups with PowerTop
	Recommended Reading
	Free for the asking...
	Slide 38
	Slide 39
	Slide 40

